建设项目环境影响报告表

项目名称:	泰州团结 220kV 输变电工程

建设单位(盖章): 国网江苏省电力有限公司泰州供电分公司

编制单位: 江苏嘉溢安全环境科技服务有限公司

编制日期: 2019年1月

《建设项目环境影响报告表》编制说明

《建设项目环境影响报告表》由具有从事环境影响评价工作资质的单位编制。

- 1. 项目名称—指项目立项批复时的名称,应不超过 30 个字(两个英文字段做一个汉字)。
 - 2. 建设地点—指项目所在地详细地址,公路、铁路应填写起止地点。
 - 3. 行业类别—按国标填写。
 - 4. 总投资—指项目投资总额。
- 5. 主要环境保护目标—指项目区周围一定范围内集中居民住宅区、学校、 医院、保护文物、风景名胜区、水源地和生态敏感点等,应尽可能给出保护目标、 性质、规模和厂界距离等。
- 6. 结论与建议—给出本项目清洁生产、达标排放和总量控制的分析结论,确定污染防治措施的有效性,说明本项目对环境造成的影响,给出建设项目环境可行性的明确结论。同时提出减少环境影响的其他建议。
 - 7. 预审意见—由行业主管部门填写答复意见,无主管部门项目,可不填。
 - 8. 审批意见—由负责审批该项目的环境保护行政主管部门批复。

目 录

-,	建设项目基本情况	1
二、	建设项目所在地自然环境简况	12
三、	环境质量状况	13
四、	评价适用标准	17
五、	建设项目工程分析	18
六、	建设项目主要污染物产生及预计排放情况	22
七、	环境影响分析	23
八、	建设项目拟采取的防治措施及预期治理效果	30
九、	环境管理与监测计划	31
十、	结论与建议	32
电磁	核环境影响评价专题	39

一、建设项目基本情况

项目名称		泰州团结 220kV 输变电工程								
建设单位		国网	江苏	省电力有	限公	·司泰/	州供电	分公司		
项目联系	\)Ē	顶鸿铂	抣				
通讯地址			江	苏省泰州	市凤	.凰西鼠	格 2 号	<u>,</u>		
联系电话		0523-86682528	3	传真		/	邮印	玫编码		/
建设地点		220kV团结变位于泰州靖江市石桥村新建北路西侧;配套线路位于家州靖江市境内。					各位于泰			
立项审批音	13.	/		批准文号			/			
建设性质	新建√	改扩建□ 技	支改□	行业类别及代码		1	电力	供应,	D4420	
占地面积	(m^2)	²) 11167		建筑面积(m²))	940			
总投资(万元)		1 1	其中: 环保投 资 (万元) 37		7	环保热 总投资 (%	段比例			
评价经费。	(万元)	_		预计投产	二日其	明		2020	年5	月

输变电工程建设规模及主要设施规格、数量:

- (1) 220kV 团结变: 主变远景规模为 3×240MVA, 本期 1×180MVA(#1), 主变户外布置;
- (2) 220kV 配套线路:将同塔四回架设的 220kV 胜利~园区、220kV 胜利~靖 江四回路开断环入团结变,形成东、西开环线路,两条线路均为 220kV 同塔四回线路, 路径长度均约为 3.8km,路径总长为 7.6km。

另由于团结站为双层构架出线,故需在 220kV 靖江变及 220kV 园区变调整进线档相序,调相重新架线 0.05km。

水及能源消耗量

名称	消耗量	名称	消耗量
水(吨/年)	少量	燃油(吨/年)	_
电 (千瓦/年)	少量	燃气(标立方米/年)	
燃煤(吨/年)	_	其他	_

废水 (工业废水 、生活污水) 排水量及排放去向

220kV 变电站巡视人员产生的少量生活污水经化粪池处理后,定期清理,不外排。

输变电设施的使用情况

本项目 220kV 变电站和架空线路运行会产生工频电场、工频磁场和噪声。

工程内容及规模

1、项目由来

为满足地方经济发展对负荷增长的需求,优化地区电网结构,进一步提高电网供电能力和供电可靠性,有必要在泰州靖江市建设团结 220kV 输变电工程。

根据《中华人民共和国环境影响评价法》、《建设项目环境保护管理条例》及《建设项目环境影响评价分类管理名录》的有关要求,本项目需要进行环境影响评价。据此,国网江苏省电力有限公司泰州供电分公司委托我公司进行该项目的环境影响评价工作,接受委托后,我公司通过资料调研、现场勘察、评价分析,并委托江苏省苏核辐射科技有限责任公司对项目周围环境进行了监测,在此基础上编制了泰州团结 220kV 输变电工程环境影响报告表。

泰州团结 220kV 输变电工程属于泰州"十三五"电网发展规划项目,《泰州"十三五"电网发展规划环境影响报告书》已于 2017 年 7 月 31 日取得江苏省环保厅的审查意见(苏环审[2017]29 号)。

2、工程规模

(1) 220kV 变电站

- ①主变压器: 主变容量远景 3×240MVA,本期 1×180MVA 主变,采用户外、三相、自耦、有载调压自冷型变压器。调压抽头 220±8×1.25%/115/10.5kV,接线组别 Yna0d11,阻抗 Uk12%=13、Uk13%=64、Uk23%=47。
 - ②电压等级: 220/110kV/10kV。
 - ③出线回路数及接线方式:

220kV: 远景 12 回,本期 8 回(园区 2 回、靖江 2 回、胜利 4 回)。本期采用双母线接线,远景接线采用双母线双分段。

110kV: 远景 14 回,本期 6 回(季市 1 回、生祠 1 回、黄桥 1 回、T 至季市~祁安 1 回、T 至孤山~马洲 1 回、城北 1 回)。本期采用双母线接线,远景接线不变。110kV 出线不属于本工程建设内容。

10kV: 远景 36 回,本期 12 回。本期采用单母线分段接线;远景单母线六分段接线。

- ④工作制度:变电站为无人值班,安排日常巡视人员。
- ⑤事故油池: 220kV 变电站主变下方设有油坑,变电站内设有事故油池,事故油

池有效容积为65m3,位于主变东侧,详见附图3。

(2) 220kV 配套线路

①线路规模

将同塔四回架设的 220kV 胜利~园区、220kV 胜利~靖江四回路开断环入团结变,形成东、西开环线路,两条线路均为 220kV 同塔四回线路,路径长度均约为 3.8km,路径总长为 7.6km。

另由于团结站为双层构架出线,故需在 220kV 靖江变及 220kV 园区变调整进线档相序,调相重新架线 0.05km。

②杆塔

本工程共新建杆塔 24 基, 具体使用情况如表 1-1:

M 11.H 124							
塔型-呼高	基数	设计水平档	设计垂直档	铁塔根开	单基塔重		
(m)		距(m)	距(m)	A(mm)	(kg)		
2/2B-SZ1-33	4	400	500	11578	34442.8		
2/2B-SZ1-36	3	400	500	12299	35852.0		
2/2B-SZ1-39	3	400	500	13019	39202.9		
2/2B-SJ1-33	3	400	550	13660	68348.1		
2/2B-SJ2-36	2	400	550	14500	76781.5		
2/2B-SJ3-36	2	400	550	15750	87048.5		
2/2B-SJ4-33	4	400	550	16272	101341.2		
2/2B-SDJ1-33	2	250/100	300/150	14568	83774.6		
2F2-SJG1-27	1	250	300	1595	30434.6		
合计	24				1498988.8		

表 1-1 杆塔一栏表

本工程导线采用 JL/G1A-630/45 钢芯铝绞线, 架空线路架设及导线有关参数见表 1-2:

	表 1-2 架全线路架设及导线有大参数						
导线型	<u></u> J号	JL/G1A-630/45					
导线结构:	钢(铝包钢)	7/2.81					
根×直径(mm)	铝	45/4.22					
截面积(mm²)	钢(铝包钢)/铝	43.6/630.0					
总截面(mm²)	674.0					
直 径(1	mm)	33.8					
分裂型	型式	单分裂					
载流量 (A)		763					
架设方	7式	同塔四回					
架设高	5度	执行 GB50545-2010 有关设计要求,敏感目标处导线高度最低约 21m					

表 1-2 架空线路架设及导线有关参数

③导线型号

3、地理位置

本项目 220kV 团结变位于泰州靖江市石桥村新建北路西侧; 配套线路位于泰州靖江市境内。220kV 团结输变电工程地理位置见附图 1。

4、变电站平面布置

全站总布置按照变电站最终规模设计。220kV、110kV及主变场地平行布置;220kV采用户外 GIS 布置在站区北部,全架空出线,场地东、西两端设置 2 组双层出线;110kV采用户外 GIS 布置在站区南部,全架空出线;主变压器布置在站区场地中部,主变东侧依次为接地变及消弧线圈成套装置、事故油池和消防水池;配电装置室位于主变压器与110kVGIS户外设备之间,配电装置室为地上一层建筑,自西向东依次为电抗器室、10kV配电装置室、二次设备室、蓄电池室及辅助用房。

220kV 团结变电站电气平面布置图见附图 3。

5、线路路径

从团结变以两条同塔四回路向北出线,沿着在建新建北路一直向北,至 S336 省道 南侧转向西,沿省道南侧走线至新茂岱北侧转向北,跨过 S336 省道,沿中心港东侧走线至同塔四回架设的原 220kV 园区/靖江-胜利四回路 57#塔东西侧开断点,形成东、西开环线路,路径长度均约为 3.8km,两条线路均为 220kV 同塔四回架设(东开环线路为胜利-团结四回线路,西开环线路为 220kV 团结~园区两回、220kV 团结~靖江两回线路)。

另由于本次团结变至园区变及靖江变出线构架为双层构架,故出线相序排列应调整为从上往下 A、B、C,需在对侧变电站调整相序,而 220kV 靖江变门口有一基单回路终端塔,不具备调相条件,需将其拆除,更换为双回路钢管杆塔(2F4-SJG1(27))进行调相,本次调相重新架线 0.05km。

220kV 靖江变改造方案图

6、工程及环保投资

本工程环保投资共计37万元,具体见表1-3。

	<u> </u>						
类型	污染源	主要 污染物	污染防治措施	投资估算(万元)			
	施工期	生活污水	化粪池	2			
废水	旭上州	施工废水	临时沉淀池	<u> </u>			
	运营期	生活污水	水处理设施 (化粪池)	2			
	事故油		事故油池、油坑	10			
	主变噪声	ti di	主变设备降噪	5			
水土保持措施			植被恢复、绿化	18			
		37					

表 1-3 工程环保投资一览表

7、相关工程环保手续履行情况

220kV 胜利~园区、220kV 胜利~靖江(220kV 胜园 2H36/2H37 线、220kV 胜靖 4H84/4H83 线)四回线路同塔架设,在"泰州 220kV 东鲍等 4 项输变电工程"中于 2014年12月29日取得江苏省环保厅的竣工环保验收意见,见附件6。

8、产业政策相符性

本项目属于《产业结构调整指导目录(2011年本)》(2016年修正)中第一类: 鼓励类"四、电力 10.电网改造与建设",亦属于《江苏省工业和信息产业结构调整指导目录(2012年本)》(2013年修正)中第一类: 鼓励类"二、电力 10.电网改造与建设",故项目符合国家和地方产业政策。

9、规划相符性

泰州团结 220kV 输变电工程环境影响报告表 220kV 团结变站址已取得靖江市规划局的选址意见书,见附件 2; 220kV 配套 线路已取得靖江市规划局的盖章同意,见附件3,工程建设符合当地发展规划的要求。 根据《江苏省生态红线区域保护规划》(苏政发〔2013〕113号),本项目变 电站和线路生态环境评价范围内不涉及江苏省生态红线区域,本项目符合江苏省生 态红线区域保护规划。 根据《江苏省国家级生态保护红线规划》(苏政发(2018)74号),本项目变 电站和线路生态环境评价范围内不涉及江苏省国家级生态保护红线区域,本项目符 合江苏省国家级生态保护红线规划。

编制依据

1、环保法规及规范性文件

- (1)《中华人民共和国环境保护法》(修订本),自2015年1月1日起施行。
- (2)《中华人民共和国环境影响评价法》(修正本),2018年12月29日起施行。
 - (3)《中华人民共和国水污染防治法》(修订本),2018年1月1日起施行。
- (4)《中华人民共和国固体废物污染环境防治法》(修正本),2016年11月7日起施行。
- (5)《中华人民共和国大气污染防治法》(修正本),2018年10月26日起施行。
- (6)《中华人民共和国环境噪声污染防治法》(修正本),2018年12月29日起施行。
 - (7) 《江苏省生态红线区域保护规划》(苏政发[2013]113号)。
 - (8)《江苏省国家级生态保护红线规划》(苏政发〔2018〕74号)。
- (9)《建设项目环境保护管理条例》(修订本),第 682 号国务院令,2017年 10 月 1 日起施行。
- (10)《建设项目环境影响评价分类管理名录》(修正本),生态环境部令第1号,2018年4月28日起施行。
- (11) 《产业结构调整指导目录(2011年本)》(2016年修正),国家发改委令第36号,2016年3月25日起施行。
- (12)《江苏省工业和信息产业结构调整指导目录(2012年本)》(2013年修正),苏经信产业[2013]183号,2013年3月15日起施行。
- (13) 《国家危险废物名录》(2016 年修订本),原环境保护部令第 39 号, 2016 年 8 月 1 日起施行。

2、相关技术规范、导则

- (1) 《建设项目环境影响评价技术导则 总纲》(HJ2.1-2016)。
- (2) 《环境影响评价技术导则 声环境》(HJ2.4-2009)。
- (3) 《环境影响评价技术导则 地面水环境》(HJ/T2.3-93)。
- (4) 《环境影响评价技术导则 地表水环境》(HJ2.3-2018 代替 HJ/T2.3-93),

2019年3月1日起实施。

- (5) 《环境影响评价技术导则 生态影响》(HJ19-2011)。
- (6) 《环境影响评价技术导则 输变电工程》(HJ24-2014)。
- (7) 《交流输变电工程电磁环境监测方法(试行)》(HJ681-2013)。

3、工程相关资料

- (1) 委托书
- (2) 变电站选址意见书
- (3) 线路路径规划意见
- (4) 标准请示复函
- (5) 本项目监测报告及资质
- (6) 泰州 220kV 东鲍等 4 项输变电工程竣工验收意见
- (7)《泰州团结 220kV 输变电工程可行性研究报告》(中国能源建设集团江 苏省电力设计院有限公司 2017 年 10 月)
- (8)《泰州团结 220kV 变电站新建工程初步设计说明书》(中国能源建设集团江苏省电力设计院有限公司 2019 年 1 月)
- (9)《江苏泰州胜利-园区、胜利靖江四回路开断环入团结变 220kV 线路工程 初步设计说明书》(中国能源建设集团江苏省电力设计院有限公司 2019 年 1 月)

评价因子、评价等级与评价范围等

1、评价因子

根据《环境影响评价技术导则输变电工程》及本工程情况,本次环评主要环境影响评价因子汇总见表 1-4:

现状评价因子 评价阶段|评价项目 单位 预测评价因子 单位 施工期 声环境 连续等效 A 声级, Leq dB (A) 连续等效 A 声级, Leq dB(A) 工频电场 工频电场 V/m V/m 电磁环境 工频磁场 工频磁场 μΤ μT 运营期 昼间、夜间等效声级, 声环境 昼间、夜间等效声级,Leq dB(A) dB(A)

表 1-4 本次环评评价因子一览表

本项目建成后,废水主要为变电站日常巡视人员的生活污水,产生量较小,经 化粪池处理后,定期清理,不外排。

2、评价工作等级

(1) 电磁环境影响评价工作等级

本项目变电站为 220kV 户外式,配套 220kV 架空线路边导线地面投影外两侧各 15m 范围内有电磁环境敏感目标,根据《环境影响评级技术导则 输变电工程》(HJ24-2014)中表 2,本项目变电站和架空输电线路电磁环境影响评价工作等级均为二级。

分类	电压等级	工程		条件	评价工作等级		
	220kV	变甲	电站	户外式	二级		
交流	220kV	输电 线路	架空	边导线地面投影外两侧各 15m 范围内有 电磁环境敏感目标的架空线	二级		

表 1-5 输变电工程电磁环境影响评价工作等级

(2) 生态环境影响评价工作等级

本项目变电站占地 11167m²,新建线路路径长度约 7.6km,变电站和线路影响区域的生态敏感性均为一般区域,对照《环境影响评价技术导则 生态影响》(HJ19-2011)中表 1,生态评价等级为三级。

影响区域生态	工程占地(水域)范围					
影响区域主恋 敏感性	面积≥20km²	面积 2km ^{2~} 20km ²	面积≤2km²			
双心	或长度≥100km	或长度 50km~100km	或长度≤50km			
特殊生态敏感区	一级	一级	一级			
重要生态敏感区	一级	二级	三级			
一般区域	二级	三级	三级			

表 1-6 生态影响评价工作等级划分表

3) 声环境影响评价工作等级

本项目站址位于泰州靖江市石桥村新建北路西侧,根据泰州市靖江环境保护局关于环境影响评价适用标准的回复(附件 4),站址所在地位于 2 类功能区,执行《声环境质量标准》(GB3096-2008)表 1 中的 2 类标准,根据《环境影响评价技术导则 声环境》(HJ2.4-2009):"建设项目所处的声环境功能区为 GB3096规定的 1 类、2 类地区,按二级评价",本项目变电站噪声评价工作等级为二级。

本项目220kV架空线路沿线主要经过2类和4a类声环境功能区,根据《环境影响评价技术导则 声环境》(HJ2.4-2009):"建设项目所处的声环境功能区为GB3096规定的1类、2类地区,按二级评价";"建设项目所处的声环境功能区为GB3096规定的3类、4类地区,按三级评价",由于220kV架空输电线路的噪声排放值较小,因此220kV架空线路的声环境影响评价可适当简化。

(4) 地表水环境影响评价工作等级

本工程输电线路运行期无废水产生。

220kV 团结变日常巡视人员产生的少量生活污水经化粪池处理后,定期清理,不外排,对周围水体无影响。根据《环境影响评价技术导则 地面水环境》 (HJ/T2.3-93),本次环评对地表水环境仅作简要分析。

3、评价范围

根据《环境影响评价技术导则 输变电工程》(HJ24-2014)及《环境影响评价技术导则 声环境》(HJ2.4-2009),本项目环境影响评价范围见表 1-7:

 评价内容
 评价范围

 变电站(220kV)
 架空线路(220kV)

 电磁环境
 站界外 40m 范围
 线路边导线地面投影外两侧各 40m 带状区域

 声环境
 站界外 100m 范围
 线路边导线地面投影外两侧各 40m 带状区域

 生态环境
 站界外 500m 范围
 线路边导线地面投影外两侧各 300m 内带状区域

表 1-7 评价范围一览表

4、评价方法

根据相应评价技术导则,确定各环境要素的评价方法如下:

(1) 电磁环境

参照《环境影响评价导则 输变电工程》(HJ24-2014),主要采取**类比监测** 法来预测变电站对电磁环境的影响,采用**类比监测和模式预测法**来预测架空线路运

注:本项目输电线路不涉及生态敏感区。

行对电磁环境的影响,并根据标准规定的电场强度、磁感应强度限值对变电站和输电线路进行环境影响评价。

(2) 声环境

根据《工业企业厂界环境噪声排放标准》(GB12348-2008),采取**模式计算** 法对变电站厂界噪声进行评价,采取**类比监测**来预测 220kV 架空线路运行后噪声对 周围环境的影响。

(3) 水环境

本工程变电站营运期日常巡视人员产生的生活污水经化粪池处理后,定期清理,不外排,对地表水不产生影响,本次仅对水环境进行简要分析。

本工程 220kV 输电线路运行期无废水产生。

(4) 生态环境

根据变电站、线路所处区域简要分析工程占地、植被破坏等对环境的影响,以及在施工时应采取的措施。

(5) 环境风险

本工程变电站的主变压器含有用于冷却的变压器油,事故工况下可能泄漏产 生事故油及油污水,对环境造成污染,其数量很少。本次环评简要分析事故油坑、 油池设置要求和事故油污水的处置要求。

与本项目有关的原有污染情况及主要环境问题:

本项目为新建项目、没有与本项目有关的原有污染情况及主要环境问题。

二、建设项目所在地自然环境简况

泰州市地处江苏中部,位于北纬32°01′57″~33°10′59″、东经119°38′24″~120°32′20″。南部濒临长江,北部与盐城毗邻,东临南通西接扬州,是苏中入江达海5条航道的交汇处,是沿海与长江"T"型产业带的结合部。泰州市下辖海陵区、高港区、姜堰区等3区,代管县级兴化市、靖江市、泰兴市等3市,另辖医药高新区和农业开发区等2个功能区,有71个镇、5个乡、20个街道办事处,1425个村民委员会,461个居民委员会。

靖江市地处江苏省苏中平原南端,位于北纬 31°56′~32°08′,东经 120°01′~120°33′。东南西三面临江,隔江与张家港、江阴、武进等市相望,东北至西北与如皋、泰兴两市毗连。全境系长江下游冲积平原,地势较为平坦,惟有孤山耸立于该市中部。

2.1 地形地貌

靖江位于下扬子三角洲苏北平原地带,构造上属长江大桥四级构造单元的下扬子台褶带的次一级构造单元——江阴、常熟穹断褶束的一部分。境内有一独立丘陵一孤山,余皆为长江三角洲冲积平原。地势平坦,以横港为界,南低北高,多在黄海高程 2.5~4.5 米。

2.2 气象

靖江地处亚热带湿润气候区,由于受季风环流势力的影响,具有明显的海洋性、季风性和过渡性气候特点,夏季炎热多雨,冬季冷寒少雨,春秋冷暖、干湿多变。

2.3 水文

靖江地处长江下游,自然条件优越。虽位于江北,但也是江南水乡景象。水资源总量约7.3亿立方米,其中地表水以引长江水为主,计2.2亿立方米,丰富的水资源为发展水产业提供了优越的条件,长江有刀鱼、鲥鱼、鮰鱼、河豚等稀少鱼种,内河有青、草、鲤、鲫、鳊等多种鱼类。地下水源约5.1亿立方米,水质优良,八圩镇地下蕴藏的优质矿泉水,日开采量可达1200吨。

2.4 生态

根据《江苏省生态红线区域保护规划》(苏政发〔2013〕113 号〕,本项目变电站和线路生态环境评价范围内不涉及江苏省生态红线区域。

根据《江苏省国家级生态保护红线规划》(苏政发〔2018〕74号),本项目变电站和线路生态环境评价范围内不涉及江苏省国家级生态保护红线区域。

三、环境质量状况

3.1 建设项目所在地区域环境质量现状及主要环境问题

本项目声环境、电磁环境委托江苏省苏核辐射科技有限责任公司监测,监测数 据报告见附件5。

(1) 监测因子

工频电场、工频磁场、等效连续 A 声级

(2) 监测方法

工频电场、工频磁场监测方法执行《交流输变电工程电磁环境监测方法(试行)》 (HJ681-2013)、环境噪声监测方法执行《声环境质量标准》(GB3096-2008)。

(3) 监测布点

本次电磁环境现状监测选择在变电站拟建址四周、输电线路有代表性的电磁环境 敏感目标处布置监测点;

本次声环境现状监测选择在变电站拟建址四周、变电站和输电线路有代表性的声 环境敏感点处布置监测点。

监测点位见附图 2 和附图 4。

(4) 监测时间及气象条件

监测时间: 2017年11月5日

监测天气: 晴,9℃~18℃, 相对湿度 50%~53%, 风速 1.0m/s~1.7m/s

(5) 监测仪器:

仪器型号及详细参数见表 3-1:

测量仪器参数一览表 表 3-1

仪器类型	仪器型号	检定 有效期	检定单位及证书	频率 范围	测量范围
工频电场	HI-3604 工频 场强仪(仪器	2017.09.2	校准单位:上海计量测试研究院;	50Hz~	1V/m~199kV/m
工频磁场	编号: 00069950)	7~2018.0 9.26	校准证书编号: 2017F33-10-124854 5002	60Hz	$8\text{mA/m} \sim 1600\text{A/m}$ (0.01 μ T \sim 2000 μ T)
噪声	AWA6228 声 级计(仪器编 号: 108205)	2017.10.1 6-2018.10 .15	检定单位: 江苏省 计量科学研究院; 检定证书: E2017-0085176	10Hz~ 20kHz	23dB(A)~135dB(A)
深.	声校准器(仪 器编号: AWA6221A0 640)	2016.11.1 4-2017.11 .13	校准单位: 江苏省 计量科学研究院 校准证书编号: E2016-0085721	10Hz~ 20.0k Hz	/

(6) 监测结果

①电磁环境现状

现状监测结果表明,220kV 团结变拟建址四周工频电场强度现状为(1.5~7.5)V/m,工频磁感应强度(合成量)现状为(0.016~0.026)μT,均能满足《电磁环境控制限值》(GB8702-2014)中公众曝露限值电场强度 4000V/m,磁感应强度 100μT 的要求。

线路敏感点测点的工频电场强度现状为(1.6~28.5)V/m,工频磁感应强度(合成量)现状为(0.016~0.035) μ T,满足《电磁环境控制限值》(GB8702-2014)中公众曝露限值电场强度 4000V/m,磁感应强度 100μ T 的要求。

②声环境现状

现状监测结果表明,220kV 团结变拟建址四周噪声现状值昼间为(44.1~46.2) dB(A),夜间为(41.0~42.7) dB(A),变电站敏感点处噪声现状值昼间为(43.9~44.7) dB(A),夜间为(40.7~41.1) dB(A),均能满足《声环境质量标准》(GB3096-2008) 2 类标准要求。

现状监测结果表明,配套线路敏感点测点的噪声现状值昼间为(43.8~44.9)dB(A), 夜间为(40.1~40.5)dB(A),均能满足《声环境质量标准》(GB3096-2008)中相应标准要求。

3.2 主要环境保护目标(列出名单及保护级别):

3.2.1 电磁环境、声环境

根据输变电导则,电磁环境保护目标为评价范围内的住宅、学校、医院、办公楼、工厂等有公众居住、工作或学习的建筑物;声环境保护目标为评价范围内的医院、学校、机关、科研单位、住宅、自然保护区等对噪声敏感的建筑物或区域。

220kV 团结变位于泰州靖江市石桥村,站址东侧为在建的新建北路,再往东为河沟;南侧为空地和石桥村大营地组民房(距离变电站最近约 84m);西侧为空地;北侧为空地和石桥村大营地组民房(距离变电站最近约 75m);西北侧民房距离变电站最近约 67m。变电站周围环境概况图详见附图 2。

220kV 配套线路位于泰州靖江市境内,主要沿新建北路、336 省道、中心港走线,评价范围内的保护目标共有民房 150 户,生态园 1 处,厂区 1 处,村委会 1 处,项目部、集装箱等用房 1 处+3 个;其中可能跨越民房 15 户、生态园 1 处、厂区 1 处。

结合表 1-7 建设项目评价范围一览表,本项目 220kV 团结变电站环境保护目标见表 3-4,220kV 团结变配套线路环境保护目标见表 3-5。

变电站名 敏感目标位置 环境质量 敏感目标名称 房屋类型 规模 (最近距离) 要求 变电站南侧约 N^2 2 层尖顶 13 户 84m 220kV 团 石桥村大营地组 1-3 层平/尖 变电站北侧约 15 户 N^2 结变 民房 顶 75m 变电站西北侧约 2 层尖顶 3 户 N^2 67m

表 3-4 220kV 团结变电站环境保护目标

注: N² 表示声环境质量 2 类标准。

表 3-5 220kV 团结变配套线路的环境保护目标							
工程名称	敏感点名称		环境质量 要求	架空线路边导线 两侧各 40m 带	与线路位置关 系		
421			女水	房屋类型	规模	不	
		大营地组民 房	E, B, N	1-3 层尖顶	14 户	线下及两侧	
	空置	置用房	E, B	1 层尖顶	1 个	线路东侧	
	石桥村力	大东垈民房	E, B, N	1-3 层尖顶	7户	线下及两侧	
	新建北	路项目部	E, B, N	1 层平顶	1 处	线路东侧	
		民房 1	E, B, N	1-2 层尖顶	2户	线下	
	石桥村 小营地 垈	民房 2	E, B, N	2-3 层尖顶	11 户	线下及两侧	
		民房 3	E, B, N	1-4 层尖顶	36 户	线下及两侧、线 路南侧	
220kV 配套线		集装箱用 房	E, B	1 层平顶	2 个	线路东侧	
路	鸿顺生态园		E, B	1 层平/尖顶	1 处	线下及两侧	
	石桥村新	石桥村新茂垈民房		1-4 层尖顶	60 户	线路南侧	
	石桥村蒋	蒋家垈民房	E, B, N	1-2 层尖顶	10 户	线路西侧	
	天姿刖	设饰厂区	E, B	1 层平/尖顶	1 处	线下	
		周碧绿垈民 房	E, B, N	2-3 层尖顶	4户	线路西侧	
	勤丰	村民房	E, B, N	2-3 层尖顶	2户	线路西侧	
	勤丰村	村村委会	E, B, N	3 层尖顶	1 处	线路西侧	
	勤丰村高	高屋垈民房	E, B, N	1-3 层尖顶	4户	线路西侧	

注: E表示电磁环境质量要求为工频电场<4000V/m;

3.2.2 生态环境

根据《江苏省生态红线区域保护规划》(苏政发〔2013〕113 号),本项目变电站和线路生态环境评价范围内不涉及江苏省生态红线区域。

根据《江苏省国家级生态保护红线规划》(苏政发〔2018〕74号),本项目变电站和线路生态环境评价范围内不涉及江苏省国家级生态保护红线区域。

B表示电磁环境质量要求为工频磁场<100μT;

N 表示相应声环境质量标准。

四、评价适用标准

环境质量标准

声环境: 变电站区域执行《声环境质量标准》(GB3096-2008)2 类,昼间: 60dB(A), 夜间: 50dB(A)。线路沿线区域执行《声环境质量标准》(GB3096-2008)2 类(昼间 60dB(A),夜间 50dB(A))和 4a 类(昼间 70dB(A),夜间 55dB(A))。

电场强度、磁感应强度: 工频电场强度、工频磁感应强度执行《电磁环境控制限值》(GB 8702-2014)表 1 中公众曝露限值,即电场强度限值: 4000V/m;磁感应强度限值: 100μT。

架空输电线路线下的耕地、园地、牧草地、畜禽饲养地、养殖水面、道路等场所,其频率 50Hz 的工频电场强度控制限值为 10kV/m,且应给出警示和防护标志。

污染物排放

标准

噪声:

运行期: 变电站厂界执行《工业企业厂界环境噪声排放标准》(GB12348-2008)2 类(昼间: 60dB(A), 夜间: 50dB(A))。

施工期: 执行《建筑施工场界环境噪声排放标准》(GB12523-2011)。

总量控制指

标

无

五、建设项目工程分析

5.1 工艺流程简述(图示):

本工程工艺流程见下图所示。

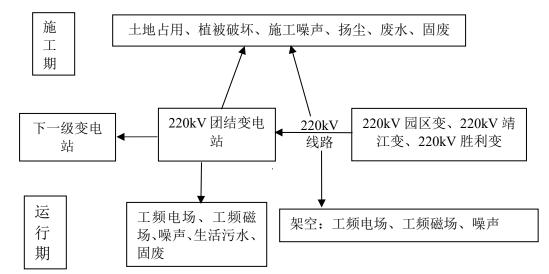


图 5-1 输变电工艺流程及主要产污环节示意图

5.2 污染因子分析

5.2.1 施工期

(1) 噪声

施工期材料运送所使用交通工具和施工期机械运行将产生噪声,根据国内外同类输变电工程施工所使用的设备噪声源水平类比调查,其中主要施工机械噪声水平如表 5-1 所示。

次51 工文施工が60米/ 次十							
设备名称	距设备距离(m)	噪声源(dB(A))					
挖掘机	2	85					
推土机	1~2	87					
自卸卡车	1~2	91					
砼搅拌机	1~2	87					

表 5-1 主要施工机械噪声水平

(2) 废水

施工期废水污染源主要为生产废水和生活污水。生产废水来自搅拌机等施工机械的清洗,主要污染物为悬浮物;生活污水主要为施工人员洗涤废水和粪便污水等,主要污染物为 COD、SS等,根据同类项目情况,施工人数约 5~10 人/班,用水量按 100L/人·d 计,污水量按用水量的 80%计算,则施工期生活污水量小于 1m³/d。

(3) 废气

大气污染物主要为施工扬尘,其次是施工车辆、动力机械燃油时排放的少量 SO₂、NO₂、CO、烃类等污染物。

扬尘主要来源有:土方挖掘、装卸过程产生的扬尘、填方扬尘;建材的堆放、 装卸过程产生的扬尘:运输车辆造成的道路扬尘。

(4) 固体废弃物

固体废弃物主要为建筑垃圾、施工人员产生的生活垃圾。

施工人数按 10 人计,生活垃圾量按 0.5kg/人·d 计算,则施工期内每天产生生活垃圾约 5kg/d。

(5) 生态环境及土地占用

施工期对生态环境的主要影响为土地占用。本工程对土地的占用主要是变电站、塔基处的永久占地及施工期的临时占地。工程占地改变了场地上原有土地的性质,变为永久性工业用地。工程临时占地包括线路临时施工场地、施工临时道路。

本工程变电站的施工工期约为 6~8 个月,其中土建施工阶段约为 5 个月,设备安装阶段约为 1 个月。输电线路单塔施工时间约为 6~8 天。为减少对生态的破坏,工程在规划选线过程中尽量减少林木砍伐;尽量避开陡坡和不良地质段,结合塔型、塔高、地质及可能采取的基础型式合理确定基面范围,正确掌握开挖基面。施工时需制定合理的施工工期,避开雨季土建施工,对土建施工场地采取围挡、遮盖的措施,避免由于风、雨天气可能造成的风蚀和水蚀。加强文明施工,塔基处表层所剥离的 15~30cm 耕植土及水坑淤泥临时堆放,采取土工膜覆盖等措施,后期用于塔基及临时施工场地,并进行绿化。合理组织、尽量少占用临时施工用地;施工结束后应及时撤出临时占用场地,拆除临时设施,恢复地表植被等,尽量保持生态原貌。

5.2.2 运行期

- (1) 220kV 变电站
- ① 电磁环境

220kV 变电站内的主变压器、配电装置在运行期间会产生一定强度的工频电场、工频磁场。污染方式主要体现在对变电站周围的电磁环境产生影响。

②噪声

根据现场调查和资料分析,变电站投入运行后,对外界可能造成噪声污染的主要污染源为变电站内的主变压器。根据省电力公司系统要求,新型号 220kV 主变压器在工作时,距主变 1m 处产生的噪声应控制在 70dB(A)以下。

③生活污水

本项目 220kV 变电站日常巡视人员产生的少量生活污水经过化粪池处理后, 定期清理,不外排。生活污水的主要污染物为 COD、SS。

4)固废

变电站日常巡视人员产生的少量生活垃圾由环卫部门定期清理。

变电站内的铅蓄电池作为应急备用电源使用,只有在事故时才会使用备用电池,蓄电池的使用频率较低,一般不进行更换。当蓄电池需要更换时,更换的废铅蓄电池须交由有危险废物综合经营许可证的机构收集、贮存、利用、处置。

变压器运行稳定性较高,一般情况下 10~20 年可不更换变压器油。当变压器运行发生故障时,则需要对变压器进行维护、更换和拆解,在此过程中除可以循环使用或再利用的变压器油外,其余不可再利用的废变压器油(如油渣、油泥等)属于《国家危险废物名录(2016版)》中的危险废物,须交由有危险废物综合经营许可证的机构收集、贮存、利用、处置,不外排。

⑤环境风险

本工程的环境风险主要来自事故情况下变压器油泄漏。变压器油是由许多不同分子量的碳氢化合物组成,即主要由烷烃、环烷烃和芳香烃组成。

本工程 220kV 变电站内设有事故油池, 其容量已按照不小于最大单台主变油量的 60%的设计要求设计, 约为 65m³, 主变下方设置事故油坑, 事故油坑与事故油池相连。事故油池底部和四周设置防渗措施,确保事故油和油污水在存储的过程中不会渗漏。变电站运营期正常情况下,变压器无漏油产生,一旦发生事故,产生的事故油及油污水排入事故油池,经收集后委托有资质的单位回收处理,不外排。

(2) 220kV 输电线路

输电线路在运行时,由于电压等级较高,带电结构中存在大量的电荷,因此会在周围产生一定强度的工频电场,同时由于电流的存在,在线路周围会产生

交变的工频磁场。
220kV 架空输电线路下的可听噪声主要是由导线表面在空气中的局部放电
(电晕)产生的。一般在晴天时,线下人耳基本不能感觉到线路运行噪声,测量
值基本和环境背景值相当。
220kV 线路正常运行时不会产生废水、废气及固体废弃物,线路正常运行
也不会对周围生态环境产生影响。

	7キ VL 7도 다 수 표 VL VL Mar 수 나 고 7도 VL HE26 kt	· МП
不、	建设项目主要污染物产生及预计排放情	<i>'</i> /π'.

内容 类型	排放源 (编号)	污染物名称	处理前产生浓 度及产生量 (单位)	排放浓度及排放量 (单位)
大气污	施工期	扬尘	少量	少量
染物	营运期	无	_	
1. >	施工期	生活污水	少量	排入居住点的化粪池,及时清理
水污 染物	旭工朔	施工废水	少量	排入临时沉淀池,处理后上清液回用
木切	营运期	生活污水	少量	经化粪池处理后, 定期清理, 不外排
电磁环境	220kV 变电 站及配套 线路	工频电场 工频磁场	_	工频电场强度: <4000V/m 工频磁感应强度: <100µT 架空输电线路线下的耕地、园地、牧草 地、畜禽饲养地、养殖水面、道路等场 所,其频率 50Hz 的电场强度控制限值 为 10kV/m。
	施工期	生活垃圾	少量	环卫部门清运
		建筑垃圾	少量	由有资质单位处理
	营运期	生活垃圾	少量	环卫部门清运
固体 废物		废铅蓄电池	少量(3~5年更 换一次)	
		变压器维护、更 换和拆解过程 中产生的废变 压器油	可能产生	一 须交由有危险废物综合经营许可证的 机构收集、贮存、利用、处置
	施工期	噪声	85-91dB(A)	满足《建筑施工场界环境噪声排放标准》(GB12523-2011)
噪 声	营运期	主变 压器噪声	距离主变 1m 处噪声不高于 70dB(A)	满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2 类
	L1 (-2/93	架空线路噪声	较小	周围声环境满足《声环境质量标准》中 相应标准要求

其 它

主变下方设置油坑,由管道通往变电站中的事故油池,防止事故时变压器油泄漏污染周围环境。事故情况下产生的事故油及油污水排入事故油池,经收集后委托有资质单位处理,不外排。

主要生态影响(不够时可附另页)

变电站及线路施工时,需要进行地表土开挖等作业,会破坏少量植被。待施工结束后,应立即恢复临时占地上的植被,减少对周围生态环境的影响。

根据《江苏省生态红线区域保护规划》(苏政发〔2013〕113 号),本项目变电站和线路生态环境评价范围内不涉及江苏省生态红线区域。

根据《江苏省国家级生态保护红线规划》(苏政发〔2018〕74号),本项目变电站和线路生态环境评价范围内不涉及江苏省国家级生态保护红线区域。

七、环境影响分析

7.1 施工期环境影响简要分析:

本项目施工期对环境影响时间短,影响效果较小,不会产生大量污染,因此对施工期环境影响仅做简要分析。

7.1.1 噪声影响分析

(1) 施工噪声水平调查

施工期机械运行将产生噪声,根据国内外同类工程施工所使用的设备噪声源水平类比调查,其中主要施工机械噪声水平如表 7-1 所示。

设备名称	距设备距离 (m)	噪声源(dB(A))							
挖掘机	2	85							
推土机	1~2	87							
自卸卡车	1~2	91							
 砼搅拌机	1~2	87							

表 7-1 主要施工机械噪声水平

(2) 施工噪声预测计算模式

考虑机械设备在露天作业,四周无其他声屏障的情况下,对单台施工机械设备噪施工噪声经距离和空气吸收衰减后到达预测点的噪声级,根据《环境影响评价技术导则 声环境》(HJ2.4-2009),施工噪声预测计算公式如下:

$$L_A(r) = L_A(r_0) - 20 \lg(r/r_0) - \Delta L$$

式中: L_A(r) — 点声源在预测点产生的 A 声级, dB;

 $L_{A}(r_{o})$ __参考位置 ro 处的 A 声级,dB;

r—预测点距声源的距离,dB;

r。—参考基准点距声源的距离, m;

 ΔL —各种因素引起的衰减量(包括遮挡物、空气吸收、地面效应引起的衰减量),本工程按 1dB/100m 考虑。

将各施工机械噪声源强代入以上公式进行计算,得出单台机械设备噪声的干扰半径,结果见表 7-2。

表 7-2			施工	噪声影	响预测	値	单位: (dB (A)		
机械设备	声源				噪声源	原与预测	点距离	(m)			
70.17数以留		5	10	20	30	40	50	80	100	150	200
挖掘机	85	77	70	63	60	57	55	51	48	45	42
推土机	87	82	75	68	65	62	60	55	53	50	47
自卸卡车	91	87	82	75	71	68	66	62	60	57	53
砼搅拌机	87	82	75	68	65	62	60	55	53	50	47

根据表7-2中计算结果,在使用推土机、挖掘机、搅拌机时,施工厂界10m处的噪声水平为70dB(A)~75dB(A),施工噪声水平在施工厂界80m处满足《建筑施工场界环境噪声排放标准》的要求。对于自卸卡车禁止在夜间施工。

另施工单位采取如下措施:

- (1)施工单位应尽量选用先进的低噪声设备,本项目施工时在高噪声设备周围设置屏障以减轻噪声对周围环境的影响,控制施工场界噪声符合《建筑施工场界环境噪声排放标准》(GB12523-2011)要求;
 - (2) 施工单位应采用先进的施工工艺。
- (3)精心安排,减少施工噪声影响时间。尽量避免夜间施工,如确需夜间施工, 应到当地环保部门办理准许施工手续。
- (4)施工中应加强对施工机械的维护保养,避免由于设备性能差而增大机械噪声的现象发生。

采用以上措施后,建设项目施工期对声环境的影响较小。

7.1.2 废气影响分析

大气污染物主要为施工扬尘,其次是施工车辆、动力机械燃油时排放的少量 SO_2 、 NO_2 、CO、烃类等污染物。

扬尘主要来源有:土方挖掘、装卸过程产生的扬尘、填方扬尘;建材的堆放、装卸过程产生的扬尘;运输车辆造成的道路扬尘。

施工粉尘随工程进程不同,工地上的尘土从地面扬起逐渐发展到从高空中逸出,严重时排尘量可高达20~30kg/h。地面上的灰尘,在环境风速足够大时就产生扬尘, 其源强大小与颗粒物的粒径大小、比重以及环境的风速、湿度等因素有关,风速越大, 颗粒越小,土沙的含水率越小,扬尘的产生量就越大。扬尘属于面源,排放高度低。

在变电站和线路施工过程中,由于土地裸露会产生局部、少量的二次扬尘,可能对 周围局部地区的环境产生暂时影响。工程采用围挡施工,可极大程度减少扬尘对周围环 境的影响,待工程结束后即可恢复。

在项目施工时,水泥装卸要文明作业,防止水泥粉尘对环境质量的影响。施工弃土 弃渣等要合理堆放,可采用人工控制定期洒水;对土、石料、水泥等可能产生扬尘的材料, 在运输时用防水布覆盖。

7.1.3 废水影响分析

施工期废水污染源主要为施工废水和生活污水。

变电站在施工阶段,在施工场地建设施工营地,先行修建临时化粪池,施工人员生活污水经化粪池处理,定期清理,不外排;线路施工阶段,施工人员居住在施工点附近租住的民房内或单位宿舍内,生活污水排入居住点的化粪池中及时清理。施工废水排入临时沉淀池,经处理后上清液回用,不外排。因此施工期废水对周围水体无影响。

7.1.4 固体废弃物影响分析

固体废弃物主要为建筑垃圾、施工人员产生的生活垃圾。本工程建筑垃圾由有资质单位处理;生活垃圾由当地环卫部门清运,对外环境无影响。

7.1.5 生态环境

变电站和线路施工时土地开挖会破坏地表植被,会给局部区域的生态环境带来一定的影响,施工完成后变电站及沿线路路径周围破坏的植被应及时进行恢复,减少对周围植被的影响。

根据《江苏省生态红线区域保护规划》(苏政发〔2013〕113号),本项目变电 站和线路生态环境评价范围内不涉及江苏省生态红线区域。

根据《江苏省国家级生态保护红线规划》(苏政发〔2018〕74号),本项目变电 站和线路生态环境评价范围内不涉及江苏省国家级生态保护红线区域。

综上,项目施工期对环境产生的上述影响均为短期的,项目建成后,影响即自行消除。建设单位和施工单位在施工过程中只要切实落实对施工产生的扬尘、噪声、固体废物的管理和控制措施,施工期的环境影响将得到有效控制,本项目施工期对当地环境质量影响较小。

- 7.2 运行期环境影响分析:
- 7.2.1 噪声环境影响分析
- (1) 220kV 变电站

①变电站声源分析

变电站运行噪声源主要来自于主变压器等大型声源设备。本工程采用低噪声变压器,220kV变压器满负荷运行且散热器全开时,其外壳1.0m处的等效A声级不大于70dB(A)。

②计算预测模式

噪声从声源传播到受声点,受传播距离、空气吸收、阻挡物的反射与屏蔽等因素 的影响,声级产生衰减。

根据 HJ2.4-2009《环境影响评价技术导则 声环境》,"8.4 典型建设项目噪声影响预测"中"8.4.1 工业噪声预测"中的方法进行。该声源属于室外声源,依据建设项目平面布置图、设备清单及声源源强等资料,建立了噪声预测的坐标系,确定主要声源坐标。计算工程建成后的厂界环境噪声排放值的声环境质量预测值。

变电站运行噪声预测计算模式:

噪声从声源传播到受声点,受传播距离、空气吸收、阻挡物的反射与屏蔽等因素的影响,声级产生衰减。根据《环境影响评价技术导则 声环境》(HJ2.4-2009),变电站噪声预测计算的基本公式为:

$$L_p (r) = L_p(r_0) - (A_{div} + A_{bar} + A_{atm} + A_{gr} + A_{misc})$$

上式中:

 $L_p(r)$ ——距声源 r 处的倍频带声压级,dB;

 $L_p(r_0)$ ——参考位置 r_0 处的倍频带声压级,dB;

Adiv——声波几何发散引起的倍频带衰减量, dB;

Abar——声屏障引起的倍频带衰减量, dB:

A_{atm}——空气吸收引起的倍频带衰减量,dB;

Ag——地面效应引起的倍频带衰减量, dB;

Amise——其他多方面效应引起的倍频带衰减量, dB。

点声源的几何发散衰减的基本公式为:

$$L_{p}(r) = L_{p}(r_{0}) - 20lg(r/r_{0})$$

对某一受声点受多个声源影响时,有:

$$L_P = 101g \left[\sum_{i=1}^{n} 10^{L_A/10} \right]$$

上式中: L_P——为几个声源在受声点的噪声叠加, dB。

③预测结果

A、变电站四周厂界

220kV 团结变电站本期建设 1 台主变 (#1),终期建设 3 台主变,距主变 1m 处噪声不超过 70dB(A),主变为户外布置,根据变电站电气总平面布置图,结合上述预测计算模型及计算参数,预测本期规模及终期规模投运后厂界外 1m 处声级水平,结果见表 7-3 和表 7-4。

人 7-5 文电站本册 1 日王文色11 归来户顶侧组来(平位 ub(A))									
预测点	时段	厂界噪声排放预测值	标准	是否符合标 准					
变电站东侧①	昼间	33.3	60	符合					
文电和小网包	夜间		50	符合					
变电站南侧②	昼间	27.2	60	符合					
文电珀角侧②	夜间	37.3	50	符合					
变电站西侧③	昼间	38.5	60	符合					
文电站四侧包	夜间	36.3	50	符合					
金 中 2 1 1 / 图 (2)	昼间	40.0	60	符合					
变电站北侧④	夜间	40.0	50	符合					

表 7-3 变电站本期 1 台主变运行后噪声预测结果 (单位 dB(A))

由上表可见,220kV 团结变本期新建 1 台主变(#1)运行产生的厂界噪声预测值为(33.3~40.0)dB(A),能满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2 类标准要求。

预测点	时段	厂界噪声排放预测值	标准	是否符合标 准					
变电站东侧①	昼间	44.0	60	符合					
文电组亦例也	夜间	77.0	50	符合					
变电站南侧②	昼间	42.1	60	符合					
文电如用则包	夜间	42.1	50	符合					
变电站西侧③	昼间	43.3	60	符合					
文电站四侧包	夜间	43.3	50	符合					
赤 中 7 h 7 l 1 l l l l l l l l l l l l l l l l l	昼间	44.7	60	符合					
变电站北侧④	夜间	44.7	50	符合					

表 7-4 变电站终期 3 台主变建成后噪声预测结果 (单位 dB(A))

由上表可见,220kV 团结变终期建成 3 台主变后,厂界噪声预测值为(42.1~44.7) dB(A),能满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2 类标准要求。

B、变电站敏感目标

注: 本项目变电站主变 24 小时稳定运行,因此,昼夜厂界排放噪声相同。

注:本项目变电站主变 24 小时稳定运行,因此,昼夜厂界排放噪声相同。

本项目220kV团结变周围存在声环境敏感目标,对每侧最近的敏感目标进行噪声影响分析,计算结果详见表7-5。

—————————————————————————————————————								
预测点	时段		主变与敏 感点距离 (m)	预测排 放值	环境 现状值	噪声预测值	标准	是否符 合标准
	本期	昼间	107	29.4	43.9	44.1	60	符合
北侧约 75m 石桥村大营	平朔	夜间	107	29. 4	40.7	41.0	50	符合
地组民房	终期	昼间	107	24.2	43.9	44.3	60	符合
地组队历		夜间	107 34.2	40.7	41.6	50	符合	
西北侧约	本期	昼间	116	28.7	44.3	44.4	60	符合
67m 石桥村		夜间	116	28.7	41.1	41.3	50	符合
大营地组民		昼间	116	33.5	43.9	44.3	60	符合
房		夜间	110	33.3	40.7	41.5	50	符合
I a fract of the		昼间	127	27.0	44.7	44.8	60	符合
南侧约 84m		夜间	12/	27.9	40.7	40.9	50	符合
石桥村大营 地组民房	かけ 廿口	昼间	127		44.7	45.0	60	符合
	终期	夜间	127	32.7	40.7	41.3	50	符合

表 7-5 变电站工程运行后敏感目标噪声预测结果 单位 dB(A)

由上表可见,220kV团结变电站本期1台主变建成运行后,敏感目标处的昼间噪声预测值为(44.1~44.8)dB(A),夜间噪声预测值为(40.9~41.3)dB(A);终期3台主变建成运行后,敏感目标处的昼间噪声预测值为(44.3~45.0)dB(A),夜间噪声预测值为(41.3~41.6)dB(A),均能满足《声环境质量标准》(GB3096-2008)2类标准要求。

(2) 220kV 输电线路

220kV架空输电线路下的可听噪声主要是由导线表面在空气中的局部放电(电晕)产生的,本项目220kV架空线路噪声环境影响评价采用类比监测法。本项目采用的类比线路为泰州220kV****线/220kV****线。

由噪声检测结果可知,220kV 输电线路正常运行时对声环境的贡献值较小,噪声水平与本底值相当。

7.2.2 电磁环境影响分析

- (1) 变电站:通过类比监测,本项目 220kV 团结变电站运行后,周围的工频电场、工频磁场均能满足《电磁环境控制限值》(GB8702-2014)中公众曝露限值工频电场强度 4000V/m、工频磁感应强度 100μT 的要求。
- (2)线路:通过类比监测和模式预测,本项目 220kV 输电线路运行后,周围的工 频电场、工频磁场均能够满足《电磁环境控制限值》(GB8702-2014)中公众曝露限值 工频电场强度 4000V/m、工频磁感应强度 100μT 的要求。

变电站及输电线路电磁环境影响分析详见专题。

7.2.3 水环境影响分析

项目建成后,变电站日常巡视人员产生的少量生活污水经化粪池处理后,定期清理,不外排,对周围水环境不产生影响。

本项目线路工程无废水产生,对水环境无影响。

7.2.4 固废环境影响分析

变电站日常巡视人员会产生少量的生活垃圾,由环卫部门统一清运,对周围环境不产生影响。

变电站内的蓄电池作为应急备用电源使用,只有在事故时才会使用备用电池,蓄电池的使用频率较低,一般不进行更换。当蓄电池需要更换时,更换的废铅蓄电池须交由有危险废物综合经营许可证的机构收集、贮存、利用、处置。

变压器运行稳定性较高,一般情况下 10~20 年可不更换变压器油。当变压器运行发生故障时,则需要对变压器进行维护、更换和拆解,在此过程中除可以循环使用或再利用的变压器油外,其余不可再利用的废变压器油(如油渣、油泥等)属于《国家危险废物名录(2016 版)》中的危险废物,须交由有危险废物综合经营许可证的机构收集、贮存、利用、处置,不得丢弃。

对照危险废物名录,本项目危废分析见表 7-8:

危险 废物类别 行业来源 废物代码 危险废物 本项目 特性 HW49 非特定行 少量(3~5年 900-044-49 Т 废弃的铅蓄电池 其他废物 更换一次) HW08 废矿物油 非特定行 变压器维护、更换和拆解 900-220-08 T, I 可能产生 过程中产生的废变压器油 与含矿物油废物

表7-8 本项目危险废物分析表

线路运行期不产生固体废物。

7.2.5 环境风险分析

本工程的环境风险主要来自事故情况下变压器油泄漏。本工程 220kV 变电站内设置事故油池,其容量按照不小于最大单台主变油量的 60%的设计要求设计,约为 65m³,主变下方设置事故油坑,事故油坑与事故油池相连。事故油池底部和四周设置防渗措施,确保事故油和油污水在存储的过程中不会渗漏。变电站运营期正常情况下,变压器无漏油产生,一旦发生事故,产生的事故油及油污水排入事故油池,经收集后委托有资质的单位回收处理,不外排。

八、建设项目拟采取的防治措施及预期治理效果

内容	排放源 (编号)	污染物名称	污染防治措施	预期治理效果
大气 污染物	施工期	扬尘	施工时,缩短土堆放的时间,遇干旱大风天气要经常 洒水	不会造成大范围污染
	运营期	无	_	_
	施工期	生活污水	排入居住点的化粪池,及时 清理	
水污染 物	加工分	施工废水	排入临时沉淀池,处理后上 清液回用	不外排,不会对周围环境产 生影响
	营运期	生活污水	经化粪池处理后定期清理, 不外排	
电磁环境	220kV 变 电站及配 套线路	工频电场 工频磁场	变电站采用距离防护,接地 装置;线路提高导线对地高 度,优化导线相间距离以及 导线布置	工频电场强度: <4000V/m 工频磁感应强度: <100μT 架空输电线路线下的耕地、 园地、牧草地、畜禽饲养地、 养殖水面、道路等场所,其 频率 50Hz 的电场强度控制 限值为 10kV/m。
	施工期	生活垃圾	环卫部门清运	不影响周围环境
		建筑垃圾	由有资质单位处理	不影响周围环境
固体废	营运期	生活垃圾	环卫部门清运,不外排	不影响周围环境
物		更换的废铅蓄电池 变压器维护、更换 和拆解过程中产生 的废变压器油	· 若产生须交由有危险废物 综合经营许可证的机构收 集、贮存、利用、处置	不影响周围环境 不影响周围环境
	施工期	施工噪声	合理安排工程进度,高强度 噪声的设备尽量错开使用 时间,并严格按施工管理要 求尽量避免夜间施工	满足《建筑施工场界环境噪声排放标准》(GB12523 -2011)
噪声	营运期	主变 压器噪声	采用低噪声设备,控制在 70dB(A)以下,同时通过 距离衰减等措施降低噪声。	厂界噪声满足《工业企业厂界环境噪声排放标准》 (GB12348-2008)2类
	\. 	架空线路噪声	选用表面光滑导线,提高导 线对地高度 通红变电站中的惠拉油池。除	线路周围声环境能满足相 应标准

生态保护措施及效果

变电站及线路施工时,需要进行地表土开挖等作业,会破坏少量植被。待施工结束后,应立即恢复临时占地上的植被,减少对周围生态环境的影响。

根据《江苏省生态红线区域保护规划》(苏政发〔2013〕113 号),本项目变电站和线路生态环境评价范围内不涉及江苏省生态红线区域。

根据《江苏省国家级生态保护红线规划》(苏政发〔2018〕74号),本项目变电站和线路生态环境评价范围内不涉及江苏省国家级生态保护红线区域。

九、环境管理与监测计划

9.1 环境管理

(1) 施工期

施工期间环境管理的责任和义务,由建设单位和施工单位等共同承担。

建设单位需安排人员具体负责落实工程环境保护设计内容,监督施工期环保措施的实施,协调好各部门或团体之间的环保工作和处理施工中出现的环保问题。

施工单位在施工期间应指派人员具体负责执行有关的环境保护对策措施,并接受环境保护管理部门对环保工作的监督和管理。

(2) 运行期

建设单位应设立环保工作人员,负责本工程运行期间的环境保护工作。其主要职责包括:

- ①贯彻执行国家及地方环境保护法律、法规和方针政策,以及各级环保行政 主管部门的要求;
 - ②落实运行期环境保护措施,制定运行期的环境管理办法和制度;
 - ③若项目实施过程中发生重大变更,按规定履行相关环保手续;
 - ④落实运行期的环境监测,并对结果进行统计分析和数据管理;
 - ⑤监控运行环保措施,处理运行期出现的各类环保问题;
 - ⑥定期向环境保护主管部门汇报:
 - ⑦项目建成投运后建设单位应及时进行建设项目竣工环境保护验收。

9.2 监测计划

为更好的开展输变电工程的环境保护工作,进行有效的环境监督、管理,为 工程的环境管理提供依据,制订了具体的环境监测计划,见表 9-1。

 阶段
 监测项目
 次数

 竣工验收阶段
 工频电场强度、磁感应强度
 1 次

 噪声
 1 次

表 9-1 环境监测计划表

十、结论与建议

10.1 结论:

10.1.1 项目由来

为满足地方经济发展对负荷增长的需求,优化地区电网结构,进一步提高电网供电能力和供电可靠性,有必要在泰州靖江市建设团结 220kV 输变电工程。

10.1.2 工程规模

- (1) 220kV 团结变: 主变远景规模为 3×240MVA,本期 1×180MVA(#1), 主变户外布置;
- (2) 220kV 配套线路:将同塔四回架设的 220kV 胜利~园区、220kV 胜利~ 靖江四回路开断环入团结变,形成东、西开环线路,两条线路均为 220kV 同塔四回 线路,路径长度均约为 3.8km,路径总长为 7.6km。

另由于团结站为双层构架出线,故需在 220kV 靖江变及 220kV 园区变调整进线档相序,调相重新架线 0.05km。

9.1.3 产业政策相符性

本项目属于《产业结构调整指导目录(2011年本)》(2016年修正)中第一类: 鼓励类"四、电力 10.电网改造与建设",亦属于《江苏省工业和信息产业结构调整指导目录(2012年本)》(2013年修正)中第一类: 鼓励类"二、电力 10.电网改造与建设",故项目符合国家和地方产业政策。

9.1.4 规划相符性

220kV 团结变站址已取得靖江市规划局的选址意见书; 220kV 配套线路已取得靖江市规划局的盖章同意,工程建设符合当地发展规划的要求。

根据《江苏省生态红线区域保护规划》(苏政发〔2013〕113 号),本项目 变电站和线路生态环境评价范围内不涉及江苏省生态红线区域,本项目符合江苏 省生态红线区域保护规划。

根据《江苏省国家级生态保护红线规划》(苏政发〔2018〕74号),本项目 变电站和线路生态环境评价范围内不涉及江苏省国家级生态保护红线区域,本项 目符合江苏省国家级生态保护红线规划。

9.1.5 项目环境质量现状:

(1) 声环境

现状监测结果表明,220kV 团结变拟建址四周噪声现状值昼间为(44.1~46.2)

dB(A), 夜间为 (41.0~42.7) dB(A), 变电站敏感点处噪声现状值昼间为 (43.9~44.7) dB(A), 夜间为 (40.7~41.1) dB(A), 均能满足《声环境质量标准》 (GB3096-2008) 2 类标准要求。

现状监测结果表明,配套线路敏感点测点的噪声现状值昼间为(43.8~44.9) dB(A),夜间为(40.1~40.5)dB(A),均能满足《声环境质量标准》(GB3096-2008)中相应标准要求。

(2) 电磁环境

现状监测结果表明,220kV 团结变拟建址四周工频电场强度现状为(1.5~7.5) V/m,工频磁感应强度(合成量)现状为(0.016~0.026)μT,均能满足《电磁环境控制限值》(GB8702-2014)中公众曝露限值电场强度 4000V/m,磁感应强度 100μT 的要求。

线路敏感点测点的工频电场强度现状为(1.6~28.5)V/m,工频磁感应强度(合成量)现状为(0.016~0.035) μ T,满足《电磁环境控制限值》(GB8702-2014)中公众曝露限值电场强度 4000V/m,磁感应强度 100μ T 的要求。

9.1.6 影响预测分析

(1) 电磁环境

通过类比监测和模式预测可知,本工程220kV变电站配套输电线路正常运行后 线路周围及敏感点的电场强度、磁感应强度将满足相关的标准限值。

(2) 声环境

经预测分析,220kV团结变本期1台主变运行产生的厂界噪声预测值为(33.3~40.0)dB(A),能满足《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准要求;敏感目标处的昼间噪声预测值为(44.1~44.8)dB(A),夜间噪声预测值为(40.9~41.3)dB(A),均能满足《声环境质量标准》(GB3096-2008)2类标准要求。

根据类比分析结果可知,110kV架空线路的噪声贡献值很小,对周围声环境影响较小。

(3) 生态环境

变电站及线路施工时,需要进行地表土开挖等作业,会破坏少量植被。待施工结束后,应立即恢复临时占地上的植被,减少对周围生态环境的影响。

根据《江苏省生态红线区域保护规划》(苏政发〔2013〕113 号),本项目 变电站和线路生态环境评价范围内不涉及江苏省生态红线区域。

根据《江苏省国家级生态保护红线规划》(苏政发〔2018〕74号),本项目变电站和线路生态环境评价范围内不涉及江苏省国家级生态保护红线区域。

9.1.7 环保措施

(1) 电磁环境

- ①变电站通过对带电设备安装接地装置,并采用距离防护等措施降低工频电 场强度及磁感应强度。
- ②线路通过提高导线对地高度,优化导线相间距离以及导线布置,以降低输电线路对周围电磁环境的影响。

本项目 220kV 架空线路跨越或邻近电磁环境敏感目标(以下简称"建筑物")时,"建筑物"最高楼层(含平顶房屋屋顶和一层尖顶房屋地面)与导线之间需保证足够的垂直距离:

- A、220kV 线路采用同塔四回同相序架设时, "建筑物"最高楼层(含平顶房屋屋顶和一层尖顶房屋地面)至导线的最小垂直距离应不小于11.0m;
- B、220kV 线路采用同塔四回逆相序架设时, "建筑物"最高楼层(含平顶房屋屋顶和一层尖顶房屋地面)至导线的最小垂直距离应不小于 6.5m。

(2) 噪声

为了降低噪声,变电站通过采用低噪声设备,同时通过距离衰减,确保变电站的厂界噪声均能达标。

(3) 水环境

变电站巡视人员产生的少量生活污水经化粪池处理后,定期清理,不外排。

(4) 固废

变电站巡视人员产生的少量生活垃圾由环卫部门定期清理。

变电站内的蓄电池作为应急备用电源使用,只有在事故时才会使用备用电池,蓄电池的使用频率较低,一般 3~5 年更换一次。当蓄电池需要更换时,更换的废铅蓄电池须交由有危险废物综合经营许可证的机构收集、贮存、利用、处置。

变压器运行稳定性较高,一般情况下 10~20 年可不更换变压器油。当变压器运行发生故障时,变压器维护、更换和拆解过程中产生的废变压器油,须交由有危险废物综合经营许可证的机构收集、贮存、利用、处置,不外排。

(5) 生态环境

变电站及线路施工时,需要进行地表土开挖等作业,会破坏少量植被。待施工结束后,应立即恢复临时占地上的植被,减少对周围生态环境的影响。

(6) 环境风险

本工程的环境风险主要来自事故情况下变压器油泄漏。本工程 220kV 变电站内设有事故油池,容积约 65m³,主变下方设置事故油坑,事故油坑与事故油池相连。变电站运营期正常情况下,变压器无漏油产生,一旦发生事故,产生的事故油及油污水排入事故油池,经收集后委托有资质单位处理,不外排。

综上所述,泰州团结 220kV 输变电工程的建设符合国家和地方产业政策;项目选址符合用地规划;项目所在区域电磁环境、声环境状况可以达到相关标准要求;在落实上述环保措施后,对周围环境的影响较小。因此,本项目就环境保护角度而言,在该地建设是可行的。

9.2 建议:

- (1) 严格落实本工程的工频电场、工频磁场污染防治等环保措施,达到环保要求。
- (2)工程建成后,应按照《建设项目环境保护管理条例》(2017修改本) 规定的要求进行竣工环保验收。

注 释

- 一、本报告表应附以下附件、附图:
 - 附件1 委托书
 - 附件 2 站址规划意见
 - 附件 3 路径规划意见
 - 附件 4 标准请示复函
 - 附件 5 监测报告及监测单位资质
 - 附件 6 泰州 220kV 东鲍等 4 项输变电工程竣工验收意见
 - 附图 1 建设项目地理位置图
 - 附图 2 220kV 团结变周围概况及监测点位图
 - 附图 3 220kV 闭结变平面布置图
 - 附图 4 线路路径及监测点位图
 - 附图 5 杆塔一览图
 - 附图 6 本项目与生态红线区域位置关系图
- 二、如果本报告表不能说明项目产生的污染及对环境造成的影响,应进行专项评价。根据建设项目的特点和当地环境特征,应选下列1—2项进行专项评价。
 - 1.大气环境影响专项评价
 - 2.水环境影响专项评价(包括地表水和地下水)
 - 3.生态环境影响专项评价
 - 4.声影响专项评价
 - 5.土壤影响专项评价
 - 6.固体废物影响专项评价
 - 7.辐射环境影响专项评价(包括电离辐射和电磁辐射)
- 以上专项评价未包括的可列专项,专项评价按照《环境影响评价技术导则》中的要求进行。

预审意见:			
		公 章	
经办人:	年	月	日
下一级环境保护行政主管部门审查意见:			
经办人:		公 章 月	日

审批意见:			
		公 章	
经办人:	年	月	日

国网江苏省电力有限公司泰州供电分公司 泰州团结 220kV 输变电工程

电磁环境影响评价专题

江苏嘉溢安全环境科技服务有限公司 2019年1月

1、总则

1.1 项目概况

本项目建设内容见表 1.1-1:

表 1.1-1 本项目建设内容一览表

 工程名 	工程组成	规模
	220kV 团结变	主变远景规模为 3×240MVA,本期 1×180MVA(#1),主变户外布置。
泰州团 结 220kV 输变电	220kV 配套线路	将同塔四回架设的 220kV 胜利~园区、220kV 胜利~靖江四回路开断环入团结变,形成东、西开环线路,两条线路均为220kV 同塔四回线路,路径长度均约为 3.8km,路径总长为
工程	ZZUKV 癿芸纹的	7.6km。 另由于团结站为双层构架出线,故需在 220kV 靖江变及 220kV 园区变调整进线档相序,调相重新架线 0.05km。

1.2 评价因子、评价标准、评价等级和评价范围

(1) 评价因子

本项目电磁环境影响评价因子见下表:

表 1.2-1 评价因子一览表

评价阶段	评价项目	现状评价因子	单位	预测评价因子	单位
运营期 电磁环境	工频电场	V/m	工频电场	V/m	
色昌朔	电磁环境	工频磁场	μТ	工频磁场	μТ

(2) 评价标准

本工程评价标准见下表:

表 1.2-2 电磁评价标准一览表

评价内容	污染物名称	标准名称	编号	标准值
电磁环境 (220kV)	工频电场强 度 工频磁感应 强度	《电磁环境控制限值》	GB8702-2014	公众曝露限值 4000V/m 公众曝露限值 100μT

(3) 评价工作等级

本项目变电站为 220kV 户外式,配套 220kV 架空线路边导线地面投影外两侧各 15m 范围内有电磁环境敏感目标,根据《环境影响评级技术导则 输变电工程》(HJ24-2014)中表 2,本项目变电站和架空输电线路电磁环境影响评价工作等级均为二级。

表 1.2-3 输变电工程电磁环境影响评价工作等级

分类	电压等级	エ	程	条件	评价工作等级
	220kV	变目	电站	户外式	二级
交流	220kV	输电 线路	架空	边导线地面投影外两侧各 15m 范围内有 电磁环境敏感目标的架空线	二级

(4) 评价范围

依据《环境影响评价技术导则 输变电工程》(HJ24-2014),本项目环境影响评价范围见下表:

表 1.2-4 评价范围一览表

评价内容	评价范围		
计训内谷	变电站(220kV)	架空线路(220kV)	
电磁环境	站界外 40m 范围	线路边导线地面投影外两侧各 40m 带状区域	

1.3 评价方法

参照《环境影响评价导则 输变电工程》(HJ24-2014),变电站电磁环境影响评价采用类比法进行影响评价;架空线路电磁环境影响评价采用模式预测法和类比法。

1.4 评价重点

电磁环境评价重点为工程运行期产生的电场强度、磁感应强度对周围环境的 影响,特别是对工程附近敏感目标的影响。

1.5 环境保护目标

根据输变电导则,电磁环境保护目标为评价范围内的住宅、学校、医院、办公楼、工厂等有公众居住、工作或学习的建筑物。结合表 1.2-4 建设项目评价范围,220kV 团结变评价范围内不存在电磁环境敏感目标,220kV 团结变配套线路的电磁环境敏感目标见表 1.5-1。

表 1.5-1 220kV 团结变配套线路的电磁环境保护目标

 工程名 称	敏感点名称		敏感点名称		环境质量 要求	架空线路边导线均两侧各 40m 带		与线路位置关 系
4 /1/y			女水	房屋类型	规模	が 		
	石桥村大营地组民 房		E, B	1-3 层尖顶	14 户	线下及两侧		
	空置	置用房	E, B	1 层尖顶	1 个	线路东侧		
	石桥村大东垈民房		E, B	1-3 层尖顶	7户	线下及两侧		
220kV	新建北路项目部		E, B	1 层平顶	1 处	线路东侧		
配套线 路		民房 1	E, B	1-2 层尖顶	2 户	线下		
	│ │ 石桥村	民房 2	E, B	2-3 层尖顶	11户	线下及两侧		
	小营地 垈	民房 3	E, B	1-4 层尖顶	36 户	线下及两侧、线 路南侧		
		集装箱用 房	E, B	1 层平顶	2 个	线路东侧		

鸿顺生态园	E, B	1 层平/尖顶	1 处	线下及两侧
石桥村新茂垈民房	E, B	1-4 层尖顶	60 户	线路南侧
石桥村蒋家垈民房	E, B	1-2 层尖顶	10 户	线路西侧
天姿服饰厂区	E, B	1 层平/尖顶	1 处	线下
勤丰村周碧绿垈民 房	E, B	2-3 层尖顶	4 户	线路西侧
勤丰村民房	E, B	2-3 层尖顶	2 户	线路西侧
勤丰村村委会	E, B	3 层尖顶	1 处	线路西侧
勤丰村高屋垈民房	E, B	1-3 层尖顶	4 户	线路西侧

注: E表示电磁环境质量要求为工频电场<4000V/m;

2、电磁环境现状监测与评价

现状监测结果表明,220kV 团结变拟建址四周工频电场强度现状为(1.5~7.5) V/m,工频磁感应强度(合成量)现状为(0.016~0.026)μT,均能满足《电磁环境控制限值》(GB8702-2014)中公众曝露限值电场强度 4000V/m,磁感应强度 100μT 的要求。

线路敏感点测点的工频电场强度现状为(1.6~28.5)V/m,工频磁感应强度(合成量)现状为(0.016~0.035) μT ,满足《电磁环境控制限值》(GB8702-2014)中公众曝露限值电场强度 4000V/m,磁感应强度 $100\mu T$ 的要求。

3、电磁环境影响预测与评价

3.1 变电站电磁影响分析(类比监测)

A、类比监测对象的选择

为预测 220kV 变电站运行后产生的工频电场、工频磁场对站址周围的环境影响,变电站电磁环境预测采用类比法开展,根据《环境影响评价技术导则 输变电工程》(HJ24-2014)中 8.1.1.1,选择类比对象从"建设规模、电压等级、容量、总平面布置、占地面积、电气形式、母线形式、环境条件及运行工况"等方面综合考虑,本次选择 220kV**变作为类比监测对象。

B、类比监测结果

220kV**变位于徐州市铜山区 X208 县道西侧、紧邻黑启动变电站。220kV 位庄变现有 2 台 180MVA 主变(#1、#2),变电站为户外型布置,220kV 配电

B表示电磁环境质量要求为工频磁场<100μT。

装置位于变电站西侧,110kV 配电装置位于变电站东侧,主变位于变电站中央。

监测结果表明,220kV**变电站周围各测点处工频电场强度为32.3V/m~184.5V/m,工频磁感应强度为0.057 μ T~0.124 μ T;220kV**变监测断面测点处工频电场强度为4.6V/m~184.5V/m,工频磁感应强度为0.016 μ T~0.124 μ T,分别符合工频电场强度4000V/m、工频磁感应强度100 μ T 的限值要求。

通过对已运行的 220kV**变的类比监测,可以预测本项目 220kV 团结变产生的电场强度、磁感应强度均能满足《电磁环境控制限值》(GB8702-2014)中公众曝露限值电场强度 4000V/m、磁感应强度 100μT 的要求。

3.2 输电线路电磁影响分析

3.2.1 220kV 架空线路理论计算预测与评价

3.2.1.1 计算模式

根据《环境影响评价技术导则 输变电工程》(HJ24-2014)附录 C 和附录 D 中的模式,对架空输电线路产生的工频电场、工频磁场强度影响预测。具体模式如下:

(1) 工频电场强度预测:

高压交流架空输电线路下空间工频电场强度的计算(附录 C)

①单位长度导线下等效电荷的计算

高压输电线上的等效电荷是线电荷,由于高压输电线半径r远远小于架设高度 h,所以等效电荷的位置可以认为是在输电导线的几何中心。

设输电线路为无限长并且平行于地面,地面可视为良导体,利用镜像法计算输电线上的等效电荷。

为了计算多导线线路中导线上的等效电荷,可写出下列矩阵方程:

$$\begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_m \end{bmatrix} = \begin{bmatrix} \lambda_{11} & \lambda_{12} & \cdots & \lambda_{1m} \\ \lambda_{21} & \lambda_{22} & \cdots & \lambda_{2m} \\ \vdots & & & & \\ \lambda_{m1} & \lambda_{m2} & \cdots & \lambda_{mm} \end{bmatrix} \begin{bmatrix} Q_1 \\ Q_2 \\ \vdots \\ Q_m \end{bmatrix}$$

式中: U——各导线对地电压的单列矩阵;

Q——各导线上等效电荷的单列矩阵;

λ——各导线的电位系数组成的m阶方阵(m为导线数目)。

[U]矩阵可由输电线的电压和相位确定,从环境保护考虑以额定电压的1.05倍作为计算电压。对于220kV三相导线,各相的相位和分量,则可计算各导线对地电压为:

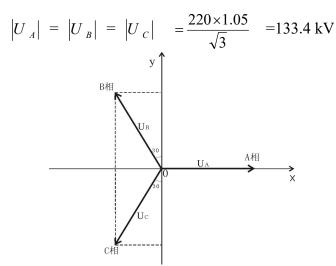


图 3.2-1 对地电压计算图

各导线对地电压分量为:

$$U_A = (133.4 + j0) \text{ kV}$$

 $U_B = (-66.7 + j115.5) \text{ kV}$
 $U_C = (-66.7 - j115.5) \text{ kV}$

[λ]矩阵由镜像原理求得。地面为电位等于零的平面,地面的感应电荷可由对应地面导线的镜像电荷代替,用i, j, ...表示相互平行的实际导线,用i', j', ...表示它们的镜像,如图3.2-2所示,电位系数可写为:

$$\lambda_{ii} = \frac{1}{2\pi\varepsilon_0} \ln \frac{2h_i}{R_i}$$

$$\lambda_{ij} = \frac{1}{2\pi\varepsilon_0} \ln \frac{L'_{ij}}{L_{ij}}$$

$$\lambda_{ij} = \lambda_{ji}$$

式中: ε_0 ——真空介电常数, $\varepsilon_0 = \frac{1}{36\pi} \times 10^{-9} F/m$;

 R_{i} —输电导线半径,对于分裂导线可用等效单根导线半径代入, R_{i} 的计算式为:

$$R_i = R \cdot \sqrt[n]{\frac{nr}{R}}$$

式中: R——分裂导线半径, m;

n——次导线根数;

r——次导线半径,m。

由[U]矩阵和[λ]矩阵,利用式等效电荷矩阵方程即可解出[Q]矩阵。

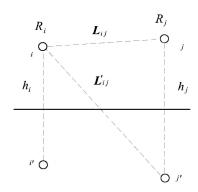


图 3.2-2 电位系数计算图

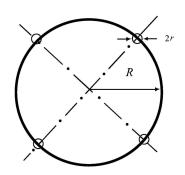


图 3.2-3 等效半径计算图

对于三相交流线路,由于电压为时间向量,计算各相导线的电压时要用复数表示:

$$\overline{U}_{i} = U_{iR} + jU_{iI}$$

相应地电荷也是复数值:

$$\overline{Q_{i}} = Q_{iR} + jQ_{iI}$$

矩阵关系即分别表示了复数量的实部和虚部两部分:

 $[U_R]=[\lambda][Q_R]$

 $[U_I]=[\lambda][Q_I]$

②计算由等效电荷产生的电场

为计算地面电场强度的最大值,通常取设计最大弧垂时导线最小对地高度。

当各导线单位长度的等效电荷量求出后,空间任意一点的电场强度可根据叠加原理计算得出,在(x, y)点的电场强度分量 Ex 和 Ey 可表示为:

$$E_{x} = \frac{1}{2\pi\varepsilon_{0}} \sum_{i=1}^{m} Q_{i} \left(\frac{x - x_{i}}{L_{i}^{2}} - \frac{x - x_{i}}{(L_{i}^{\prime})^{2}} \right)$$

$$E_{y} = \frac{1}{2\pi\varepsilon_{0}} \sum_{i=1}^{m} Q_{i} \left(\frac{y - y_{i}}{L_{i}^{2}} - \frac{y + y_{i}}{(L_{i}^{\prime})^{2}} \right)$$

式中: x_i , y_i ——导线i的坐标(i=1、2、...m);

m——导线数目:

 L_i , L_i ——分别为导线i及其镜像至计算点的距离, m。

对于三相交流线路,可根据复数量的实部和虚部求得的电荷计算空间任一点 电场强度的水平和垂直分量为:

$$\overline{E_x} = \sum_{i=1}^{m} E_{ixR} + j \sum_{i=1}^{m} E_{ixI} = E_{xR} + j E_{xI}$$

$$\overline{E_y} = \sum_{i=1}^{m} E_{iyR} + j \sum_{i=1}^{m} E_{iyI} = E_{yR} + j E_{yI}$$

式中: E_{xR} ——由各导线的实部电荷在该点产生场强的水平分量;

 E_{xt} _____由各导线的虚部电荷在该点产生场强的水平分量;

 E_{vR} ——由各导线的实部电荷在该点产生场强的垂直分量;

 E_{y} ——由各导线的虚部电荷在该点产生场强的垂直分量。

该点的合成的电场强度则为:

$$\overline{E} = (E_{xR} + jE_{xI})\overline{x} + (E_{yR} + jE_{yI})\overline{y} = \overline{E_x} + \overline{E_y}$$

式中: $E_x = \sqrt{E_{xR}^2 + E_{xI}^2}$; $E_y = \sqrt{E_{yR}^2 + E_{yI}^2}$
在地面处(y=0)电场强度的水平分量:
$$E_x = 0$$

(2) 工频磁场强度预测

高压交流架空输电线路下空间工频磁场强度的计算(附录 D)

由于工频情况下电磁性能具有准静态特性,线路的磁场仅由电流产生。应用安培定律,将计算结果按矢量叠加,可得出导线周围的磁场强度。

和电场强度计算不同的是关于镜像导线的考虑,与导线所处高度相比这些镜像导线位于地下很深的距离*d*:

$$d = 660\sqrt{\frac{\rho}{f}} \quad (m)$$

式中: ρ ——大地电阻率, $\Omega \cdot m$;

f-----频率, Hz。

在很多情况下,只考虑处于空间的实际导线,忽略它的镜像进行计算,其结果已足够符合实际。如图3.2-4,不考虑导线*i*的镜像时,可计算在A点其产生的磁

场强度:

$$H = \frac{I}{2\pi\sqrt{h^2 + L^2}} \quad (A/m)$$

式中: I——导线i中的电流值, A;

h——导线与预测点的高差,m;

L——导线与预测点水平距离,m。

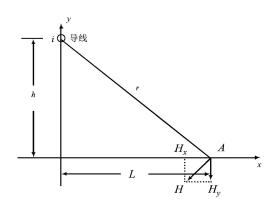


图 3.2-4 磁场向量图

对于三相线路,由相位不同形成的磁场强度水平和垂直分量都应分别考虑电流间的相角,按相位矢量来合成。合成的旋转矢量在空间的轨迹是一个椭圆。

3.2.1.2 计算参数的选取

本工程架空线路为 220kV 同塔四回线路,本次以 220kV 同塔四回线路进行 预测计算,预测参数选择见下表:

线路类型	220kV 四回线路			
导线类型	JL/G1A-630/45			
单根导线载流量 (A)	763			
直径 mm	33.8			
计算截面(mm²)	674.0			
分裂型式	单分裂			
分裂间距 mm	/			
相序排列	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
塔形	2/2B-SZ1			
架设高度	*执行 GB50545-2010 有关设计要求			

表 3.2-1 220kV 输电线路导线参数及预测参数

根据《110kV~750kV 架空输电线路设计规范》(GB50545-2010)对 220kV 架空线路导线高度的设计要求, 预测计算采用的导线高度设置为:

- ①7.5m (线路经过居民区导线对地面的最小高度);
- ②6.5m(线路经过非居民区导线对地面的最小高度);

③6.0m(导线与建筑物之间的最小垂直距离);

另外,根据《环境影响评价技术导则 输变电工程》(HJ24-2014)关于预测结果应给出"符合 GB 8702 限值的对应位置"的要求,预测计算结果表中增列以下两个"高度"(垂直距离):

- •导线下方同时符合限值 4000V/m、100μT 的对应位置至导线的垂直距离;
- 导线下方符合限值 10kV/m 的对应位置至导线的垂直距离。

3.2.1.4 分析与评价

本项目架空线路工频电磁环境影响预测结果的分析采用以下方法: 将导线在计算点处产生的工频电场强度、工频磁感应强度理论计算值(排放值)叠加背景值的影响后,对照相应公众曝露限值(环境质量标准)进行评价(后文所称"预测计算结果"已包含背景值叠加影响);本项目架空线路工频电场强度、工频磁感应强度的背景值取为不受已有运行线路影响的现状监测值,其最大值分别为8.5V/m、0.035μT。

①计算结果表明,本工程拟建 220kV 四回架空线路采用同相序方式架设时,其下方同时符合工频电场强度限值 4000V/m、工频磁感应强度 100µT 的要求的对应位置(指相应计算点下方 1.5m 处)位于导线下方(垂直距离)11.0m 处;当该线路跨越(或邻近)建筑物按照导线与建筑物之间的最小垂直距离为 6.0m 的设计要求架设时,建筑物内与屋顶的高差不足 5.0m 的楼层处和平顶建筑物屋顶处不能满足工频电场强度限值 4000V/m 的要求,根据预测计算结果,"建筑物"顶层(最高楼层、平台、平顶)与导线之间的垂直距离不小于 11.0m 时,才能同时满足工频电场强度限值 4000V/m、工频磁感应强度限值 100µT 的要求。

本工程拟建 220kV 四回架空线路采用逆相序方式架设时,其下方同时符合工频电场强度限值 4000V/m、工频磁感应强度 100μT 的要求的对应位置(指相应计算点下方 1.5m 处)位于导线下方(垂直距离)6.5m 处;当该线路跨越(或邻近)建筑物按照导线与建筑物之间的最小垂直距离为 6.0m 的设计要求架设时,建筑物内与屋顶的高差不足 0.5m 的楼层处和平顶建筑物屋顶处不能满足工频电场强度限值 4000V/m 的要求,根据预测计算结果,"建筑物"项层(最高楼层、平台、平顶)与导线之间的垂直距离不小于 6.5m 时,才能同时满足工频电场强度限值 4000V/m、工频磁感应强度限值 100μT 的要求。

②计算结果表明,本工程拟建 220kV 四回架空线路采用同相序架设时,其

下方符合工频电场强度控制限值 10kV/m 的对应位置(指预测点下方 1.5m 处)位于导线下方(垂直距离)4.7m 处;采用逆相序架设时,其下方符合工频电场强度控制限值 10kV/m 的对应位置(指预测点下方 1.5m 处)位于导线下方(垂直距离)4.0m 处。本工程 220kV 四回架空线路按照非居民区导线最小对地高度为 6.5m、居民区导线最小对地高度为 7.5m 的设计要求架设(均大于上述的 4.7m、4.0m),其经过"耕地等场所"的工频电场强度能够满足控制限值 10kV/m 的要求。

③计算结果表明,本工程 220kV 四回架空线路建成运行后,线路附近的敏感目标各楼层处的工频电场、工频磁场均能满足《电磁环境控制限值》(GB8702-2014)工频电场强度 4000V/m、工频磁感应强度 100 μ T 公众曝露限值要求。

3.2.2 220kV 线路类比监测与评价

按照类似本工程的建设规模、电压等级、线路负荷、线路类型及使用条件等原则确定相应的类比工程。工频电场与线路的运行电压有关,相同电压等级情况下产生的工频电场大致相同。工频磁场与线路的运行负荷成正比。

本工程建成后送电线路模式为 220kV 同塔四回线路。本次环评选取同类型线路进行类比。

●220kV 四回架空线路

本次评价选择泰州 220kV****线/220kV****线进行类比监测。

监测结果表明,220kV*****36/220kV****36测点处运行产生的工频电场强度为 $21.2V/m\sim1350.8V/m$ 、 工频磁感应强度为 $0.032\mu T\sim0.836\mu T$,分别满足《电磁环境控制限值》(GB8702-2014)表 1 中工频电场 4000V/m、工频磁场 $100\mu T$ 公众曝露限值要求。

参照《环境影响评价技术导则 输变电工程》(HJ24-2014)附录 C、D 推荐的计算模式,电场强度与电压有关,类比监测时线路电压为(230.3~232.7)kV,达到负荷要求,故测值具有代表性;磁感应强度将随着输送功率的增大,即运行电流的增大而增大,二者基本呈正比关系,根据监测结果,220kV****线/220kV****线周围磁感应强度监测最大值为 0.836μT,推算到设计输送功率情况下,磁感应强度约为监测条件下的 4.64 倍,即最大值 3.88μT。因此,即使是在设计最大输送功率情况下,线路运行时的磁感应强度均能满足标准限值要求。

由类比监测的数据可知,本工程 220kV 同塔四回线路建成后,其产生的电

场强度、磁感应强度将能满足相应标准的要求。

4、电磁环境保护措施

- ①变电站通过对带电设备安装接地装置,并采用距离防护等措施降低工频电场强度及磁感应强度。
- ②线路通过提高导线对地高度,优化导线相间距离以及导线布置,以降低输电线路对周围电磁环境的影响。

本项目 220kV 架空线路跨越或邻近电磁环境敏感目标(以下简称"建筑物")时,"建筑物"最高楼层(含平顶房屋屋顶和一层尖顶房屋地面)与导线之间需保证足够的垂直距离:

- A、220kV 线路采用同塔四回同相序架设时,"建筑物"最高楼层(含平顶房屋屋顶和一层尖顶房屋地面)至导线的最小垂直距离应不小于11.0m;
- B、220kV 线路采用同塔四回逆相序架设时, "建筑物"最高楼层(含平顶房屋屋顶和一层尖顶房屋地面)至导线的最小垂直距离应不小于 6.5m。

5、电磁环境影响评价结论

通过现状监测、类比评价、模式预测及评价,本项目 220kV 变电站及配套 220kV 线路周围的电场强度、磁感应强度均能够满足《电磁环境控制限值》 (GB8702-2014)中公众曝露限值电场强度 4000V/m、磁感应强度 100μT 的要求。